科研进展
近代物理所在铁铬基合金氧化膜的微观结构演化研究中取得进展
铁素体/马氏体钢和奥氏体钢等铁铬基合金是以超临界水冷堆、铅冷快堆为代表的先进核能系统的首要候选材料。材料的抗腐蚀性能是决定先进核能关键系统部件能否安全服役的重要因素之一,材料表面氧化膜的微观特性决定了其抗腐蚀性能。
中国科学院近代物理研究所先进核能中心核能工程材料室的研究人员以氧化膜中镍元素富集为切入点,研究了铁铬基合金(15-15Ti 、316L、T91等)的早期氧化腐蚀行为以及氧化膜微观结构的演化过程。相关成果于近日发表在Journal of Materials Science & Technology上。
前期研究发现,奥氏体钢(15-15Ti、316L)氧化膜的镍富集层由铁铬尖晶石氧化物和未氧化的富镍相组成,同时在氧化膜中发现了大量的纳米孔洞,这些孔洞是氧化剂内扩散的通道。基于镍元素的空间分布和迁移行为,研究团队揭示了富镍层的演化过程并提出了一种氧化膜中纳米孔洞的形成机制。
作为腐蚀过程中元素迁移和空位聚集的产物,孔洞对以扩散为主导的氧化腐蚀行为也有着重要影响。研究人员利用透射电子显微镜进一步对比研究316L和T91氧化膜的微结构,重点关注氧化膜中孔洞的形貌、分布、尺寸等微观特性。
研究发现,不同于以往大多数基于光学显微镜和扫描电镜的观察结果,高分辨的透射电子显微镜观测表明,在纳米尺度下316L和T91氧化膜的内层比外层更加多孔。通过进一步分析,研究团队明确了316L抗腐蚀性能优于T91的原因在于其多孔富铬的内氧化层,阐明了氧化膜中纳米孔洞对材料抗氧化腐蚀性能的影响机制。研究人员结合模型计算,揭示了镍迁移扩散是奥氏体钢316L内层氧化膜中纳米孔洞形成的主导因素。
以上研究结果为新型抗腐蚀材料的研发提供了关键科学依据与技术支撑。
图1:T91 (a) 和 316L (b) 氧化膜的微观结构示意图。(刘超/图)
图2:316L和 T91氧化膜中纳米孔洞的TEM图像。(刘超/图)
该工作得到了国家自然科学基金青年基金项目与联合基金重点项目、中国科学院重点部署项目和兰州重离子加速器国家实验室等的支持。
相关文章链接:
https://doi.org/10.1016/j.jmst.2023.07.046
https://doi.org/10.1016/j.corsci.2022.110557
(核能工程材料室 供稿)